Theoretical Studies of the Optical Spectra and EPR Parameters of CaWO₄: Sm³⁺ Crystal

Hui-Ning Dong^{a,b,c}, Hong Tang^a, Xiao-Bing Luo^c, and Shao-Yi Wu^{b,d}

Reprint requests to H.-N. D.; E-mail: donghn@cqupt.edu.cn

Z. Naturforsch. **59a**, 113 – 115 (2004); received November 16, 2003

The optical spectra and EPR parameters (g factors g_{\parallel} , g_{\perp} and hyperfine structure parameters A_{\parallel} , A_{\perp} of 147 Sm and 149 Sm) of Sm $^{3+}$ in CaWO $_4$ crystal are calculated from the second-order perturbation formulas of EPR parameters for a 4f 5 ion in tetragonal symmetry. In these formulas, the J-mixing among the 6 H $_J(J=5/2,7/2$ and 9/2) states via crystal-field interactions, the mixtures among the states with the same J value via spin-orbit coupling interaction and the interactions between the lowest Kramers doublet $\Gamma \gamma$ and the same irreducible representations in the other 11 Kramers doublets Γ_x via the crystal-field and orbital angular momentum (or hyperfine structure) are considered. The theoretical results agree reasonably with the observed values.

Key words: EPR; Crystal Field Theory; Sm³⁺; CaWO₄.

^a Institute of Applied Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

^c College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

d Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China